Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument 00	International evidence

The Equity Premium and the One Percent

Alexis Akira Toda¹ Kieran James Walsh²

¹University of California, San Diego

²University of Virginia, Darden School of Business

2017 ICEF October 28, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction ●000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Question	1			

Question: Does wealth/income distribution matter for asset pricing?

Intuitive answer: Yes: as the rich get richer, they buy risky assets and drive up prices

[Statements] that "business is good" and "times are booming"... represent the point of view of the ordinary business man who is an "enterpriser-borrower." They do not represent the sentiments of the creditor, the salaried man, or the laborer...

-Irving Fisher, "Introduction to Economic Science", 1910

Introduction ○●○○	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Motivat	ion			

- With complete markets and time- and state-separable utility, a representative agent (RA) exists (Constantinides, 1982)
- But, that does not mean that the wealth distribution is irrelevant for asset pricing, because:
 - RA's preference in general depends on the initial wealth distribution, and non-standard
 - RA constructed using Second Welfare Theorem, but possibility of multiple equilibria (ambiguous comparative statics)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Requirement for Gorman (1953) aggregation very strong (identical homothetic preferences)

Introduction 00●0	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Contribu	ution			

- Theoretical Show in a heterogeneous-agent GE model that wealth inequality among risk aversion/belief types affects the equity premium:
 - equilibrium uniqueness in a two period model with Epstein-Zin agents with heterogeneous risk aversion, belief, and discount factor
 - shifting wealth from less-stock holder to more-stock holder reduces equity premium
 - Empirical Rising inequality (top 1% income share) negatively predicts returns:
 - holds in- and out-of-sample in U.S.
 - robust to controls and using top estate tax rate change as instrument
 - holds in post-1970 cross-country panel

Introduction 000●	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Literatu	ro			

Asset pricing theory Dumas (1989), Wang (1996), Basak & Cuoco (1998), Gollier (2001), Chan & Kogan (2002), Hara, Huang, & Kuzmics (2007), Guvenen (2009), Longstaff & Wang (2012), Bhamra & Uppal (2014), Gârleanu & Panageas (2015), etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Return prediction Shiller (1981), Lettau & Ludvigson (2001), Welch & Goyal (2008), Hansen & Timmermann (2015)

Inequality and asset pricing Johnson (2012)

Introduction 0000	Model ●0000	Inequality and equity premium	Tax policy as instrument	International evidence
Static model				
(Simplif	fied) M	odel		

- Standard general equilibrium model with incomplete markets (GEI) and constant relative risk aversion (CRRA) preferences:
 - States: $s = 1, \dots, S$
 - Assets: $j = 1, \dots, J$. Asset j pays A_{sj} in state s
 - Agents: i = 1, ..., I. Agent *i* has CRRA utility

$$U_i(x) = \begin{cases} \left(\sum_{s=1}^{S} \pi_{is} x_s^{1-\gamma_i}\right)^{\frac{1}{1-\gamma_i}}, & (\gamma_i \neq 1) \\ \exp\left(\sum_{s=1}^{S} \pi_{is} \log x_s\right), & (\gamma_i = 1) \end{cases}$$

where $\gamma_i > 0$: relative risk aversion, $\pi_{is} > 0$: subjective probability of state s

- Aggregate endowment $e \in \mathbb{R}_{++}^{S}$; agent *i*'s endowment $e_i = w_i e$, where w_i : wealth share (collinear endowments)
- *U_i*(*x*) is homogeneous of degree 1 (for convenience); just a monotonic transformation of additive CRRA utility

Introduction 0000	Model ○●○○○	Inequality and equity premium	Tax policy as instrument	International evidence 000	
Static model					
Definition of equilibrium					

• Agent *i* solves

 $\begin{array}{ll} \displaystyle \max_{x,y} & U_i(x) \\ \mbox{subject to} & q'y \leq 0, \; x \leq e_i + Ay, \end{array}$

where

- $q = (q_1, \ldots, q_J)'$: vector of asset prices,
- $y = (y_1, \ldots, y_J)'$: number of shares held,
- $A = (A_{sj})$: payoff matrix of assets

• Equilibrium $(q, (x_i), (y_i))$ is defined by

(Agent optimization) $(x_i, y_i) \in \mathbb{R}^{S}_+ \times \mathbb{R}^{J}$ maximizes utility,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 (Market clearing)
$$\sum_{i=1}^{l} y_i = 0$$

Introduction	Model	Inequality and equity premium	Tax policy as instrument	International evidence
0000	oo●oo		00	000
Static model				

Characterization of equilibrium

Theorem

Let everything be as above. Then there exists a unique equilibrium. The equilibrium portfolio (y_i) is the solution to the planner's problem

$$\begin{array}{ll} \underset{(y_i) \in \mathbb{R}^{J'}}{\text{maximize}} & \sum_{i=1}^{J} w_i \log U_i (e_i + Ay_i) \\ \text{subject to} & \sum_{i=1}^{J} y_i = 0. \end{array}$$

Letting $\sum_{i=1}^{l} w_i \log U_i(e_i + Ay_i) - q' \sum_{i=1}^{l} y_i$ be the Lagrangian with Lagrange multiplier q, the equilibrium asset price is q.

D > 4 周 > 4 B > 4 B > B < 9000</p>

• Note: Pareto weights (*w_i*) are exogenous

Introduction 0000	Model ○○○●○	Inequality and equity premium	Tax policy as instrument	International evidence
General model				
General	model			

- General model:
 - Two period (t = 0, 1), two assets (stock and bond)
 - I + 1 agents, i = 0: hand-to-mouth laborer with income share $1 \alpha_t$; $i \ge 1$: capitalist with income share $\alpha_t w_i$ with $\sum w_i = 1$
 - EZ preference with unit EIS, arbitrary discount factor, risk aversion, and belief
- Main theoretical results:
 - Unique equilibrium and analytical characterization
 - ② Equity premium independent of labor income share $1-lpha_t$
 - Shifting wealth from bond investor to stock investor reduces equity premium (Shifting wealth from impatient to patient investor increases P/D ratio)
- Note: all top wealth & income share data include poor agents in population, but theoretically the poor are irrelevant, at least for equity premium (only within-capitalist inequality matters)

Introduction 0000	Model ○○○○●	Inequality and equity premium	Tax policy as instrument	International evidence
General model				
Who ho	olds mo	re stocks?		

- Individual problem reduces to $\max_{\theta} E_i[u_i(R(\theta))]$, where
 - θ : fraction of wealth invested in stock,
 - $R(\theta) = R\theta + R_f(1 \theta)$: gross return on portfolio,
 - $u_i(x) = \frac{1}{1-\gamma_i} x^{1-\gamma_i}$: CRRA utility, and
 - E_i: expectation under agent i's belief
- A risk tolerant or optimistic agent is the natural stock holder

Proposition

- Suppose agents have common beliefs. If $\gamma_1 > \cdots > \gamma_I$, then $0 < \theta_1 < \cdots < \theta_I$.
- Suppose agents 1, 2 have common risk aversion. If agent 1 is more pessimistic, then $\theta_1 < \theta_2$.

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Data				

Does inequality predict returns?

- According to theory, shifting wealth from less- to more-stock holder reduces equity premium
- Using household asset allocation data (e.g. from Survey of Consumer Finances), many papers show that the rich are more heavily invested in stocks (Carroll, 2002; Campbell, 2006; Bucciol & Miniaci, 2011; Calvet & Sodini, 2014)
- Hence rising inequality should negatively predict subsequent returns

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Data				

Proxying capitalist inequality from income inequality

 Using Piketty & Saez (2003) top income share data w/o realized capital gains, by Taylor approximation

$$\mathrm{KGR}(x) := \frac{\mathrm{top}(x) - \mathrm{top}(x)^{\mathrm{excg}}}{1 - \mathrm{top}(x)} \approx \alpha \rho_x \frac{Y_x^k}{Y^k},$$

where

- $\alpha = Y^k/Y$: aggregate capital income share,
- ρ_x : fraction of realized capital gains income to capital income for top x%,
- Y^k_x/Y^k: capital income share of top x% to aggregate capital income
- KGR = <u>c</u>apital gains <u>r</u>atio
- Saez & Zucman (2016) data suggests ρ_x explains almost all of KGR(x)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

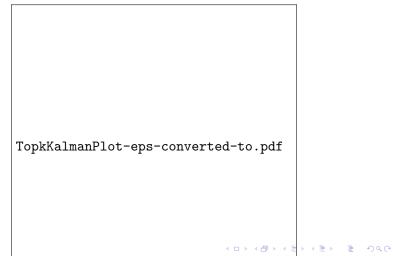
Introduction	

Data

Model 00000 Inequality and equity premium

Tax policy as instrumer

International evidence


Decomposition of KGR

	Dependent Variable: $\log(KGR(x))$					
	(1)	(2)	(3)	(4)	(5)	(6)
Regressors (t)	0.1%	1%	10%	1%	1%	1%
Constant	-0.11	-0.31	0.87	-4.10	-2.68	-2.67
Constant	(0.39)	(0.38)	(0.41)	(1.72)	(0.088)	(0.44)
	1.38***	0.93***	1.63***	-0.00		
$\log(lpha)$	(0.29)	(0.31)	(0.31)	(1.11)		
$\log(\alpha)$	0.90***	1.04***	1.22***		1.00***	
$\log(ho_x)$	(0.08)	(0.11)	(0.11)		(0.11)	
$\log(Y_x^k/Y^k)$	0.85***	1.22***	3.64***			1.87***
$\log(T_X/T)$	(0.10)	(0.24)	(0.56)			(0.55)
Sampla	1922-	1916-	1962-	1916-	1916-	1916-
Sample	-2012	-2012	-2012	-2012	-2012	-2012
R^2	0.93	0.90	0.93	0.00	0.78	0.14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Data				
Time se	eries of	KGR(1)		

• KGR(1) actually looks very much like the detrended top 1% income share series

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Data				
Interpre	tation	of KGR(1)		

- KGR likely captures capitalist wealth inequality rather than timing of realizing capital gains because
 - **1** Estate tax $\uparrow \implies \text{KGR} \downarrow$,

2 $\operatorname{KGR} \uparrow \Longrightarrow$ rich invest more in stocks

	Dependent: t to $t + 1$ change in asset class wealth share					
	E	quities sha	re	E	Bonds sha	are
Regressors (t)	0.1%	1%	10%	0.1%	1%	10%
Constant	-0.98	-1.35	-0.48	-0.03	-0.45	-0.36
Constant	(0.52)	(0.58)	(0.21)	(0.47)	(0.62)	(0.28)
$\mathrm{KGR}(x)$	0.64***	0.52***	0.15***	0.07	0.21	0.09
Ron(x)	(0.24)	(0.19)	(0.05)	(0.25)	(0.21)	(0.07)
Samula	1913-	1913-	1917-	1913-	1913-	1917-
Sample	-2012	-2012	-2012	-2012	-2012	-2012
R^2	0.06	0.06	0.05	0.00	0.01	0.01

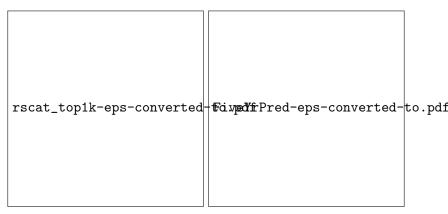
Introdu	

lel Inequ

Inequality and equity premium

Tax policy as instrumer

International evidence


Regression analysis

Regression using KGR(1)

Dependent Variable: t to $t + 1$ Excess Market Return						
Regressors (t)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	11.92	11.30	17.30	9.10	14.65	13.59
	(2.74)	(4.06)	(8.07)	(16.82)	(10.84)	(3.63)
$\mathrm{KGR}(1)$	-2.69*** (1.00)	-2.70** (1.25)	-3.38* (1.76)	-2.89* (1.54)	-2.56** (1.12)	-2.79** (1.37)
	(1.00)	0.36	(1.70)	(1.54)	(1.12)	(1.57)
$\Delta \log(\text{GDP})$		(0.48)				
$L_{\alpha}(OOV)$		()	-2.15			
$\log(\mathrm{CGV})$			(2.97)			
$\log(P/D)$				0.99		
108(172)				(5.66)		
$\log(P/E)$					-1.12	
					(4.21)	1.25*
CAY						(0.76)
	1913-	1930-	1930-	1913-	1913-	1945-
Sample	-2015	-2015	-2015	-2015	< ⊴2015	

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Regression analysis				

5-year regressions

(a) Scatter plot.

(b) Time series plot.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Figure: Year t to year t + 5 excess stock market return (annualized) vs. year t KGR(1), 1913–2015.

Introduction	Model	Inequality and equity premium	Tax policy as instrument	International evidence
Out-of-sample prec				

Out-of-sample performance of KGR

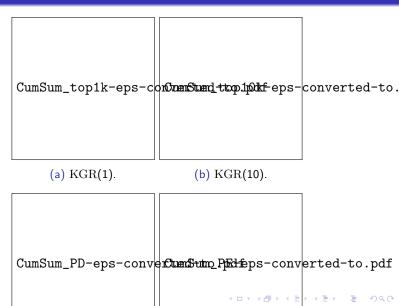
• Test $\beta = 0$ (variable x_t not useful for prediction) in

$$R_{t+1} = \alpha + \beta x_t + \varepsilon_{t+1}$$

using Hansen & Timmermann (2015) out-of-sample test

• $0 < \rho < 1$: fraction of sample set aside for initial estimation

Predictor in the ALT Model					
ho	$\mathrm{KGR}(1)$	$\mathrm{KGR}(10)$	$\mathrm{KGR}(0.1)$	$\log(P/D)$	$\log(P/E)$
0.2	3.67***	6.07***	2.67**	-0.12	0.77*
0.2	(0.0040)	(0.0010)	(0.0131)	(0.1367)	(0.0515)
0.3	2.16**	3.19***	1.43**	0.23	1.34**
0.5	(0.0153)	(0.0068)	(0.0436)	(0.1245)	(0.0360)
0.4	1.42**	2.94***	0.64*	-0.42	0.58*
0.4	(0.0388)	(0.0081)	(0.0901)	(0.2781)	(0.0845)
				Image: A matrix and a matrix	·문····문····문


Introduction 0000 Model 00000 Inequality and equity premium

Tax policy as instrument

International evidence

Out-of-sample predictions

Difference in mean-squared prediction errors

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument ●0	International evidence

Using tax policy as instrument

- Current and lagged top estate tax rate (ETR) changes significantly correlated with KGR
- Can be used as instruments to address causality

Regressors	Dependen 0.1%	t Variable: 1%	$\frac{\mathrm{KGR}(x)_t}{10\%}$
Constant	1.52 -0.04***	2.37 -0.06***	3.11 -0.07***
$\Delta \mathrm{ETR}_t \ \Delta \mathrm{ETR}_{t-1}$	-0.03**	-0.04*	-0.04*
$\Delta \mathrm{ETR}_{t-2}$	-0.07***	-0.10***	-0.10***
ΔETR_{t-3}	-0.06***	-0.08***	-0.08***
R^2	0.26	0.24	0.19

Tax policy as instrument $o \bullet$

International evidence

IV regressions using tax rate change as instrument

Dependent Variable: t to $t + 1$ Excess Market Return				
	KGR(x) version			
Regressors (t)	0.1%	1%	10%	
Constant	18.09	22.58	28.43	
	(24.05)	(23.85)	(24.78)	
$\mathrm{KGR}(x)$	-10.79**	-7.52**	-6.91**	
	(4.54)	(3.27)	(3.08)	
% ΔIP	-1.51***	-1.49***	-1.46***	
	(0.51)	(0.49)	(0.48)	
$\log(P/E)$	3.71	2.61	1.90	
	(9.98)	(10.02)	(10.64)	
	0.65	0.69	0.75	
J statistic	(p = 0.72)	(p = 0.71)	(p = 0.69)	

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Introduction	Model	Inequality and equity premium	Tax policy as instrument	International evidence
				00

Cross-country panel regressions

- Theoretical model is about a closed economy
- Theory should apply to "relatively closed" economies:
 - Large economy (U.S.),
 - Small country with home bias (emerging countries)
- Theory should not apply to small open economies (e.g., Europe)
- For any relatively open economy, inequality of international investors (proxy: U.S.) should matter
- Hence redo exercise with local and U.S. inequality series and Mishra (2015) home bias measure

Introduction 0000 Inequality and equity premium

Tax policy as instrumen

International evidence

Regressions using local and U.S. top income shares

Dependent Variable: t to $t+1$ Stock Return				
	(1)	(2)	(3)	(4)
Regressors (t)	All	Advanced	ex-U.S.	ex-U.S.
T 10/	-0.94*	-1.01*	-0.42	2.61
Top 1%	(0.52)	(0.49)	(0.70)	(1.55)
			-2.51***	-0.53
U.S. KGR(1)			(0.43)	(0.75)
Top 1%				-5.44**
$\times homebias$				(2.42)
U.S. KGR(1)				-4.17**
$\times (1 - \text{homebias})$				(1.60)
Country FE	Yes	Yes	Yes	Yes
Obs.	815	712	769	687
<i>R</i> ² (w,b)	(.00,.05)	(.01,.03)	(.02,.13)	(.03,.27)

Introduction 0000	Model 00000	Inequality and equity premium	Tax policy as instrument	International evidence
Conclus	ion			

- Effect of wealth distribution on asset prices is intuitive (Fisher narrative) but there are only a few theoretical papers and almost no empirical work
- Provided a simple GE model with heterogeneous wealth/risk aversion and derived negative relation between inequality and equity premium
- Rising inequality (top 1% income share) negatively predicts returns:
 - holds in- and out-of-sample in U.S.
 - robust to controls and using top estate tax rate change as instrument
 - holds in post-1970 cross-country panel